Mutational and crystallographic analysis of l-amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813: Interconversion between oxidase and monooxygenase activities

نویسندگان

  • Daisuke Matsui
  • Do-Hyun Im
  • Asami Sugawara
  • Yasuhisa Fukuta
  • Shinya Fushinobu
  • Kimiyasu Isobe
  • Yasuhisa Asano
چکیده

In this study, it was shown for the first time that l-amino acid oxidase of Pseudomonas sp. AIU813, renamed as l-amino acid oxidase/monooxygenase (l-AAO/MOG), exhibits l-lysine 2-monooxygenase as well as oxidase activity. l-Lysine oxidase activity of l-AAO/MOG was increased in a p-chloromercuribenzoate (p-CMB) concentration-dependent manner to a final level that was five fold higher than that of the non-treated enzyme. In order to explain the effects of modification by the sulfhydryl reagent, saturation mutagenesis studies were carried out on five cysteine residues, and we succeeded in identifying l-AAO/MOG C254I mutant enzyme, which showed five-times higher specific activity of oxidase activity than that of wild type. The monooxygenase activity shown by the C254I variant was decreased significantly. Moreover, we also determined a high-resolution three-dimensional structure of l-AAO/MOG to provide a structural basis for its biochemical characteristics. The key residue for the activity conversion of l-AAO/MOG, Cys-254, is located near the aromatic cage (Trp-418, Phe-473, and Trp-516). Although the location of Cys-254 indicates that it is not directly involved in the substrate binding, the chemical modification by p-CMB or C254I mutation would have a significant impact on the substrate binding via the side chain of Trp-516. It is suggested that a slight difference of the binding position of a substrate can dictate the activity of this type of enzyme as oxidase or monooxygenase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ligand complex structures of l‐amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 and its conformational change

l-Amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 (l-AAO/MOG) catalyzes both the oxidative deamination and oxidative decarboxylation of the α-group of l-Lys to produce a keto acid and amide, respectively. l-AAO/MOG exhibits limited specificity for l-amino acid substrates with a basic side chain. We previously determined its ligand-free crystal structure and identified a key residu...

متن کامل

Mutational mapping of the catalytic activities of human tyrosinase.

Tyrosinase (EC 1.14.18.1) is a copper-containing metalloglycoprotein that catalyzes several steps in the melanin pigment biosynthetic pathway; the hydroxylation of tyrosine to L-3,4-dihydroxyphenylalanine (dopa) and the subsequent oxidation of dopa to dopaquinone. It has been proposed that tyrosinase is also able to oxidize 5,6-dihydroxyindole (DHI), a later product in the melanogenic pathway, ...

متن کامل

A Simple Enzymatic Method for Production of a Wide Variety of D-Amino Acids Using L-Amino Acid Oxidase from Rhodococcus sp. AIU Z-35-1

A simple enzymatic method for production of a wide variety of D-amino acids was developed by kinetic resolution of DL-amino acids using L-amino acid oxidase (L-AAO) with broad substrate specificity from Rhodococcus sp. AIU Z-35-1. The optimum pH of the L-AAO reaction was classified into three groups depending on the L-amino acids as substrate, and their respective activities between pH 5.5 and ...

متن کامل

Isolation and Identification of a Sulfide/Sulfoxide Monooxygenase Gene from a Newly Isolated Rhodococcus Sp. Strain FMF

Rhodococcus FMF is a gram-positive bacterium isolated for the first time from soil samples of Tabriz refinery in Iran. This microorganism is able to catabolize dibenzothiophene to 2-hydroxybiphenyl and inorganic sulfur without the destruction of carbon-carbon bonds. Three structural genes, dszA, dszB, and dszC have been characterized and shown to be responsible for this phenotype. In this work,...

متن کامل

Assignment of 1H, 13C and 15N NMR signals from toluene 4-monooxygenase Rieske ferredoxin in its oxidized state.

Rieske [2Fe-2S] centers are found in membrane ubiquinone cytochrome oxidase complexes (Trumpower and Gennis, 1994), as integral parts of the active site in the cis-dihydrodiol forming aromatic dioxygenases (Mason and Cammack, 1992), and as soluble electron carriers in bacterial dioxygenase and monooxygenase complexes (Harayama et al., 1992). X-ray crystal structures of the Rieske domains from t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014